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LAB #3: Statistical descriptions of data; comparing two samples 

 
 

 
BEFORE LAB 
• Read the Introduction and skim the lab exercises below. 
• Review microscope use and safety and take the Blackboard quiz 
 
 
OBJECTIVES 
 
1. Understand the primary functions of statistics; describing populations and testing alternative 

hypotheses. 
2. Familiarity and understanding of statistical terms; Population vs sample, parameter, mean, 

median, mode, continuous vs categorical data, alternative vs null hypothesis, test statistic 
including the example of t, alpha and P-value, population and sample variance, population 
and sample standard deviation, standard error. 

3. Understand the meaning of P-value in the context of hypothesis testing. 
4. Practice skills in data management, graphing, and statistical analysis (excel). 
 
 
INTRODUCTION 
 
Populations and samples 
 
 Populations in statistics are the complete groups of interest; the full set of individuals we 
are interested in making inferences about. It could be all men or women, or all voters in an 
election, or all members of a single lizard species. There are two sampling problems statistics 
tries to solve. First, we almost never can collect data on an entire population. Instead, we have to 
make inferences about the parameters, variables that describe a population [like mean, median, 
or variance], from smaller samples*. We measure these parameters in the samples, then use the 
variability in those samples to figure out how close we thing our sample parameter estimates are 
to the true population parameters. Second, we often don’t even know if we are dealing with two 
or more separate populations for a given trait of interest, like leg length, or if we are in fact 
looking at a single population. Note that two different species might well be good biological 
species, but if they don’t differ in some specific trait, like leg length, we consider them 
statistically to be a single population (for that trait). In this lab we will measure a couple different 
kinds of samples; Paramecium bursaria vs ceratium, and the morphology of Galapagos finches 
before and after a drought in the Galapagos. In both cases we will use statistics to ask whether 
the two samples come from the same or different populations. 
 
  ______________  
*  Proper sampling is a subject of its own, but any factor that makes a sample less than a completely random 

selection from the population of interest can bias results, and almost all actual samples are called samples of 
convenience, meaning they are what we could get, not what is actually out there. One of many good 
discussions is here; https://blogs.scientificamerican.com/guest-blog/where-are-the-real-errors-in-political-
polls/  
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Before we get to statistical parameters we should define variable types. Data can take at 
least three forms; continuous, categorical, and ordinal. Continuous data varies as it sounds, 
quantitatively in either integer or decimal units. Think length, width, running speed, height, 
weight, age at death, development time. Categorical data refers to discrete, discontinuous states 
that variables can take. Think sex, species, phylum, state or country of origin, color, or genotype. 
Ordinal data are beyond the scope of this course, but are used frequently in behavioral studies, 
they are categories with ranks, such that the order is important but the scale is not regular or 
linear. In this lab we will describe continuous variables using the sample parameters of mean, 
variance and standard deviation. The parameters we will deal with today are measures of central 
tendency and spread. 

Measures of central tendency 
Central tendency can be described by the mean, or average of all values, the median, or 

the value separating the larger half of the values from the smaller half, and the mode, the most 
common value. The mean is the parameter we are probably most comfortable with. The mean 
score a class achieves on an exam is often what we use to measure our own success. We use a 
bar above a variable to show that it is a mean (𝑋"). The entire population has a mean µ, and an 
estimate of the population mean from a sample is 𝑋".  

    Population mean = µ = ΣXi  /N 
                     __ 
        Sample mean = X = ΣXi  /n 
                   

In the above formulas the Σ is the symbol for “sum of”, so ΣXi means sum of the X’s - 
that is summing the values from each individual in the sample and dividing by n, which is the 
number of individuals in the sample 

A normally distributed population is one that is fully described by the mean and the 
variance. It is symmetrical around the mean, giving it the familiar ‘bell’ shape. In theory the tails 
extend to infinity in each direction. The mean, median and mode are the same. In the right 
(positive)-skewed distribution the mean is larger than the mode because it is affected more by 
extremely large values. An example of a right-skewed population is household income in the US.   
  

Author: Diva Jain. Source Wikipedia 
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The median individual income in the US was under $33,000 in 2018. However, the extremely 
high annual incomes of the wealthiest 1% (average income in this percentile is over $1,300,000) 
raises the mean individual income to $50,000 (US Soc Sec Admin). The mean is more 
vulnerable to outliers than the median. The left (negative) skewed population has a mean smaller 
than the median or mode because it is more affected by extreme negative outliers. 
Measures of spread 
 Measures of variability in data are just as important as measures of central tendency. This 
is because the more variable a population, the more often you might collect two samples with 
means pretty far from each other by chance. The less variable a population, the closer we would 
expect the means of multiple samples to be to each other. This means that the variability 
(sometimes call spread or dispersion) of our data is critical to determining the statistical 
significance of any difference in the means of different samples. One measure of spread is pretty 
crude, the range of values from low to high. The ones we will focus on are based on the 
differences of each point from the mean.  
Variance: If we were to just use the average difference of each point from the mean as a 
measure of spread, we would always end up with zero. This is because by definition some points 
will be above and some below the mean, and the sum of those differences must cancel out. One 
way (not the only way, but that’s history) to make the differences positive is to square them. The 
fundamental measure of spread in statistics is the variance, the average of the squares of the 
differences of each point from the mean. The population variance, denoted s2, is then:  

𝜎$ =
∑ (𝑋( − µ)$,
(-.

𝑁  

Where i is each invidual data point, N is the population size, Xi is the value of an individual, and 
µ is the population mean. Now remember we almost never get to measure the population 
variance or mean (µ). Instead we collect data from samples, that have sample mean 𝑋" and the 
sample variance is slightly different: 

𝑠$ =
∑ (𝑋( − 𝑋")$,
(-.

𝑛 − 1  

This is very similar, but not identical to the population variance. Some things are just symbols. 𝑋" 
really is the same calculation as a population mean, just for the sample collected, similarly n is 
just the sample size rather than the population size. However, why n-1 and not just n? Stats math 
geniuses over a century ago realized that small samples tend to under-estimate variance, because 
they are less likely to pick up rare extreme values, so they put in a correction; using n-1 in the 
denominator will make a fraction bigger than using just n. The smaller the sample, the more of 
an enlarging effect subtracting one from the denominator will increase the sample variance 
estimate. Large samples, that are likely to catch some rare extreme values won’t have sample 
variances increased much at all. The sample standard deviation, which is sort of like (not 
exactly, don’t worry about it until you’re in a stats class) the average difference from the mean, 
is the square root of the variance, so s = √𝑠$. Variance and standard deviation (SD) alone are 
measures of how variable your sample data are, but to put a range around a mean estimate or test 
the difference between two means, we need to measure the uncertainty of the mean estimate 
itself, not the variability in our data. The term that describes variability around the sample mean 
estimate is the standard error, SE, sometimes written SE6", to show that it is describing 
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variability of the mean estimate, not variability of the individual data points. It is calculated by 
taking the sample standard deviation and dividing it by the square root of the sample size,  

SE6" =
𝑠
√𝑛

 

In this way SE is influenced by variability among data points, but there is also a large effect of 
sample size; larger samples will have larger denominators, and smaller standard errors. This 
makes a lot of sense. If individual data points are less variable (low s) then there is less 
variability around the estimate of the mean (any sample will probably be close to the true mean). 
However, even if individual data points are highly variable, it you sample a lot of them the 
sample mean will also be pretty close to the true mean; there will be less uncertainty around your 
mean estimate.  
The range within which the true mean is found 

The standard error (SE6") is used to define the range within which we have a certain level 
of confidence (90%, 95%, 99%) the true mean lies. We determine that confidence interval by 
multiplying the SE by a new variable, t. t a continuous probability distribution (a curve that 
defines the probabilities of different values of a variable) that describes how many standard 
errors away from the true mean small samples are expected to be. It was developed by a 
statistician working to improve quality controls at Guinness brewing company from small 
samples at the start of the 20th century. For a given value of degrees of freedom, which for a 
single mean is just one less than the sample size (n-1), and a given level of confidence in your 
mean estimate, t will tell you the range where that proportion of sample means will fall. In the 
figure below there is a probability density function for sample means of size 30. The filled areas 
each cover 0.025 (2.5%) of the area of the curve, showing that 5% of the time sample means will 
be greater than 2.042 standard errors away from the true mean.  

 
So, to generate a 95% confidence interval around a mean estimate from a sample, you add and 
subtract t times the standard error from the sample mean: 
 

CI = 𝑋" ± 𝑡;
$,=>

∗ 𝑆𝐸6" 

0

0.1

0.2

0.3

0.4

0.5

-4 -3 -2 -1 0 1 2 3 4

Pr
ob

ai
lit

y 
de

ns
ity

Standard errors from the mean

t-distribution for n=30

0.025 of the 
area under the 
curve (a=0.05) 
 

0.025 of the 
area under the 
curve (a=0.05) 
 



 5 

Where 𝑡B
C,=>

 can be looked up in a table like the one below, for a 95% confidence interval a/2 is 

0.025, df is n-1, and 𝑆𝐸6" =
D
√E

.  Note from the table below that for large sample size a good rule 
of thumb is that 95% of the sample means, like 95% of the data in a normally distributed 
population, lie within 2 standard errors of the sample mean. 
 
Table 1: Values of t for various df and a-levels. 

    CI P=0.95  CI P=0.99 
df a/2=0.1 a /2=0.05 a /2=0.025 a /2=0.01 a /2=0.005 

1 3.078 6.314 12.706 31.821 63.657 
2 1.886 2.920 4.303 6.965 9.925 
3 1.638 2.353 3.182 4.541 5.841 
4 1.533 2.132 2.776 3.747 4.604 
5 1.476 2.015 2.571 3.365 4.032 
6 1.440 1.943 2.447 3.143 3.707 
7 1.415 1.895 2.365 2.998 3.499 
8 1.397 1.860 2.306 2.896 3.355 
9 1.383 1.833 2.262 2.821 3.250 

10 1.372 1.812 2.228 2.764 3.169 
11 1.363 1.796 2.201 2.718 3.106 
12 1.356 1.782 2.179 2.681 3.055 
13 1.350 1.771 2.160 2.650 3.012 
14 1.345 1.761 2.145 2.624 2.977 
15 1.341 1.753 2.131 2.602 2.947 
16 1.337 1.746 2.120 2.583 2.921 
17 1.333 1.740 2.110 2.567 2.898 
18 1.330 1.734 2.101 2.552 2.878 
19 1.328 1.729 2.093 2.539 2.861 
20 1.325 1.725 2.086 2.528 2.845 
21 1.323 1.721 2.080 2.518 2.831 
22 1.321 1.717 2.074 2.508 2.819 
23 1.319 1.714 2.069 2.500 2.807 
24 1.318 1.711 2.064 2.492 2.797 
25 1.316 1.708 2.060 2.485 2.787 
26 1.315 1.706 2.056 2.479 2.779 
27 1.314 1.703 2.052 2.473 2.771 
28 1.313 1.701 2.048 2.467 2.763 
29 1.311 1.699 2.045 2.462 2.756 
30 1.310 1.697 2.042 2.457 2.750 
40 1.303 1.684 2.021 2.423 2.704 
50 1.299 1.676 2.009 2.403 2.678 
60 1.296 1.671 2.000 2.390 2.660 
70 1.294 1.667 1.994 2.381 2.648 
80 1.292 1.664 1.990 2.374 2.639 
90 1.291 1.662 1.987 2.368 2.632 

100 1.290 1.660 1.984 2.364 2.626 
infinity 1.282 1.645 1.96 2.327 1.576 
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Exercise 1: Comparing the size of two protists. 
Hopefully we learned how to use the stage micrometer in Bio 105 or at least in the 

chapter to prepare for the microscope quiz. We will quickly review. The first rule of QC 
microscopy is … Never get involved in a land war in Asia! No, that’s the Princess Bride. Here’s 
the real one: 

Never use coarse focus above 4X. That’s because the stage micrometers we use cost 
$100-200, and even a paramecium slide is $35. Oh and we don’t want you to get cut by broken 
glass. Basic safety is that you use course focus only in 4x, after you’ve centered your subject, 
then increase the magnification, always by turning the ring and not yanking on the objectives, 
looking from the side to make sure you’re not going to grind the objective into the slide, and then 
use only fine focus at the higher magnification. My favorite tips for basic microscopy are to not 
be lazy eyed and use both eyes, adjusting the spread of the oculars so you see a single image 
circle, and don’t set the lamp to 11 all the time. Lower light, and even narrower aperture will 
often give much better contrast and detail.  

The first step will be to work with your partner to each measure 10 protists, either 
Paramecium caudatum, a population ecology classic, or Ceratium, an armored dinoflagellate. 
Take a look at your protist slide. Can you see the ocular micrometer, the scale that rotates when 
you rotate the eyepiece? Great. While you’re at it, rotate the ocular micrometer so it is 
horizontal. Now, are you going to use 4x, 10x (most likely), or 40x to measure your protist? The 
next step is to calibrate your ocular micrometer at the magnification you have chosen, to 
determine how many actual µm each unit on the ocular micrometer is. Remember the stage 
micrometer is 1 or 2 mm long, divided by larger divisions every 0.1mm (100µm) and the 
smallest divisions are 0.01mm (10µm). Align the ocular and stage micrometers so you can get a 
good count of how many ocular units are in a known number of stage units. 

 
In the figure to the left, 
there are 80 units on the 
ocular micrometer spanning 
a range of 1 mm (1000 µm) 
on the stage micrometer. 
1000µm / 80 units is .. 
100µm/8 units, or … 
25µm/2 units, or … 
12.5µm per ocular unit. 
You’re ready now! You can 
remove the stage 
micrometer, put it away 
carefully, and now you can 
count the ocular units for 
each protist and multiply it 
by the factor for your 
microscope for each 
sample. 

  

Microbiology  BIOL 275 
 

    
Dr. Eby Bassiri        ebassiri@sas.upenn.edu 
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Bacterial Size Measurements 
 
 To be able to measure the size of microorganisms, an ocular micrometer disc is 
placed in one of the oculars. The disc has numbered lines on it as is shown below: 

 

 
The units might be different on different ocular micrometers; i.e., some go up to 10 or 50 
while others go up to 100. Our main concern here is to determine the length of one unit 
of the ocular micrometer. For this purpose, we need to calibrate this unit against a known 
length. There are prepared slides on the market called stage micrometers which have a 
scale of known length etched in the glass. The scale when observed under the 
microscope looks as below: 
 

 
 
The total given length for the above is 2.0 mm (only 1.0 mm is shown above) as 

measured by the manufacturer. Thus it can be seen that the units would be as follows: 

The smallest 
units are 

0.01mm, or 
10µm 

The larger 
units are 

0.1mm, or 
100µm 

Five larger units are 
0.5 mm, or 500 µm 

Stage micrometer 

0     0.5        1.0 mm 
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Ocular units: _____________________  Stage micrometer µm: ___________________ 
µm / ocular unit__________________ 
 
Fill in the table below with your 10 measurements in ocular units. For fun let’s use excel to 
calculate the actual length in µm. 
 

Species:   
Observation Ocular units µm 
1   
2   
3   
4   
5   
6   
7   
8   
9   
10   

 
There is a companion excel file for this lab, called “Lab 3 T-testinator.” Since the whole point 
of this and any lab is to mess things up, download the excel file, and rename it, best to include 
your name and lab. Use the first sheet in the workbook, “Single sample worksheet”, enter the 
species, the ocular units and the stage micrometer µm. In cell C4, to the right of the cell that says 
“µm per unit” type “=C3/C2” without quotation marks. The ‘=’ sign tells Excel that you are 
typing a formula, and either clicking on cells or typing the column letter and row number will tell 
excel to use the contents of those cells in any formulae. There is a huge number of functions 
excel can calculate for you, each with its own non-intuitive syntax. After you have entered the 10 
measurements in ocular units, can you enter a formula in cell C8 to calculate the first sample’s 
length in µm? When you have done so, perhaps with help from your partner or lab instructor, 
copy and paste that formula to calculate the lengths of all the samples. You’ll see that the 
average of the sample is calculated in cell C18, but also that this workbook used the 
Insert\Name\Define Name menu command to assign the name ‘average’ to that cell, so now 
other formulas can refer to that fixed cell value in their own formulas.  The first cell in the colum 
that calculates the difference between each datapoint and the sample mean use that variable 
name. Take a look at those formulas and paste them down, so now the sheet will have the sum of 
squares and the variance calculated. Now you enter the formulas to calculate the SD and SE. In 
excel the square root of a value x would be written (x)^0.5. Now you’re ready to calculate the 
confidence interval: 
What is the value of t for n=10, a/2 = 0.025? _________________ 
Use that value of t to calculate the CI95 as described on pages 4-5  _____________________  
 
We are now ready to compare the sample means of the two species and ask if they are 
significantly different. 
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Compare the means of two samples: 
To statistically test whether two means are different we need a new measure of uncertainty 
around our sample estimates. Instead of the SE6", the standard error of the sample mean estimate, 
we need the SE6FG6C, which is to say how variable is the estimate of the difference between the 
two sample means.  

SE6FG6C = H
𝑠.
𝑁.
+
𝑠$
𝑁$

 

Where s1 and s2 are the standard deviations of each sample, and N1 and N2 are the sample sizes. 
There are different ways to calculate the test statistic, t, depending on assumptions of equal 
variances, but let’s use the simplest, not because the assumptions are met, but because it shows 
what shapes the test statistic. The simplest test statistic to compare two means is  

𝑡 =
𝑋. − 𝑋$
SE6FG6C

 

How will t vary with an increasing difference between the sample means?  

______________________________________________________________  
How will t vary with increasing variability of the data within each sample?  

______________________________________________________________ 
 How will t vary with an increasing sample size (N1 and N2)?  

______________________________________________________________ 
Degrees of freedom in a two-sample t-test is easy to calculate if you know or can assume that the 
variances are equal in the two samples. In that case it’s N1+N2-2.  It has to be approximated if 
that assumption can’t me made, and that’s beyond this lab.  

Work with your partner to complete the following table: 
 

Parameter Length of Paramecium 
caudatum (in µm) 

Length of Paramecium 
caudatum (in µm) 

Sample size N   
Mean  X   

Stnd Deviation s    
Variance s2   

95% Confidence 
Interval CI 

  

SE6FG6C   
 

𝑡6FG6C   
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Now, look up in the t-table above for 18 df (N1+N2-2) whether the t calculated from your samples 
is greater than the critical value of t in the table for a=0.05 (a/2=0.025). The critical value of a 
test statistic is the value of the test statistic above which we reject the null hypothesis. Let’s 
unpack that definition. A null hypothesis is the hypothesis of no difference, relationship or effect. 
For the two-sample mean it is that the two means are equal. The alternative hypothesis is that the 
means are different. The critical value depends on p, which is a measure of how unlikely our data 
are if the null hypothesis was in fact true. The p-value is the probability of obtaining a result as 
far from the null hypothesis prediction as our data were, or farther, if the null hypothesis were 
true. In this case it is asking how often we would observe means as far from each other or farther 
if the true means were the same. A low p-value suggests that it would be very unlikely that two 
samples from the same population would have means as different as we observed, and provides 
evidence to reject the null hypothesis. When the p-values is less than the alpha-level you select, 
the result is considered statistically significant. Typically, 0.05 is used as the alpha-level.  
What’s the critical value of t for 18 df and a=0.05? ______________ 

How does the test statistic t compare with the critical value?  
______________________________________________________________ 

What’s your conclusion? 
______________________________________________________________ 

 
The next part of the lab is adapted from HHMI Bio interactive 
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The final sheet in the workbook contains actual 
data from 100 medium ground finches living on 
Daphne Major in 1976. Fifty of those birds did not 
survive the 1977 drought (nonsurvivors) and 50 
did (survivors). Use the T-testinator spreadsheet to 
complete the table below comparing the samples 
of survivors and non-survivors. To the right is an 
example of a good bar-graph, showing how one 
continuous trait, dorsal fin height varies as a 
function of the explanatory categorical variable 
sex. The bars above the means are 95% confidence 
intervals. In the box below the table, draw a bar 
graph of how one variable varies between 
survivors and non-survivors.  

 

The Origin of Species: Beak of the Finch                 Revised December 2017 
www.BioInteractive.org                   Page 1 of 6 

Activity 
Student Handout 

Evolution in Action: 
Statistical Analysis 

INTRODUCTION 
In 1973, Princeton University evolutionary biologists Peter and Rosemary Grant began studying the finches of 
the Galápagos archipelago, a group of islands about 600 miles off the coast of Ecuador. They collected 
thousands of measurements every year to track changes in the physical characteristics of finch populations over 
time. One of their major goals was to collect enough data to identify associations between environmental and 
evolutionary changes in finch populations. 
 
For their study, the Grants focused on the medium ground finch (Geospiza fortis), a seed-eating species of finch 
on the island of Daphne Major. Every year, the Grants measured physical characteristics like wing length, body 
mass, tarsus length (the section of leg between the ankle and knee), and beak depth for hundreds of individual 
medium ground finches. Small changes in these structures can be important for survival in different 
environments. In addition, these traits tend to vary widely within populations.  
 
In early 1977, a drought began on Daphne Major. The drought lasted for 18 months and caused the type and 
abundance of food available to the finches to change rapidly. Medium ground finches prefer to eat the small, 
soft seeds of the bushy plant chamaesyce (Chamaesyce amplexicaulis), but the supply of chamaesyce seeds was 
extremely limited as a result of the drought. As the drought progressed and the hungry finches quickly ate the 
small, soft chamaesyce seeds, one of the only remaining food sources for the medium ground finch became the 
seeds of a plant called caltrop (Tribulus cistoides). Caltrop seeds are much larger and harder than those of the 
chamaesyce and are covered with pointy spines. Fewer than 20% of the 1,200 medium ground finches on the 
island survived the drought of 1977. 
 
The Grants were interested in determining whether there were any differences between the finches that 
survived the drought and the finches that did not—and in particular, whether any physical characteristics were 
key to survival. To answer this question, they compared the average value of different characteristics in the 
finches that survived the drought to the average values of the same characteristics in those that did not survive. 
They then applied statistical methods to determine whether the differences they found between the two groups 
were likely to be real or merely occurred by chance.  
 
You now have the opportunity to statistically analyze data collected by the Grants. 
 
MATERIALS 
x Scientific calculator if not using a computer with a spreadsheet program like Excel or Google spreadsheet 
x Graphing paper if not using a computer 
x Colored pencils for graphing if not using a computer  
x Ruler for graphing if not using a computer 
 
PROCEDURE 
Table 1 (on the next page) shows body measurements from 100 medium ground finches living on Daphne Major 
in 1976. Fifty of those birds did not survive the 1977 drought (nonsurvivors) and 50 did (survivors). These data 
are also provided in an Excel spreadsheet; use either the data in Table 1 or in the Excel spreadsheet to 
construct several graphs as outlined in the following pages.

Evolution in Action: Statistical Analysis   
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Activity 
Student Handout 

4. Calculate the 95% confidence interval for each set of data. 

Confidence limits serve the same purpose as SEM. The 95% CI provides a range of values within which the mean 

of the entire population is likely to be found. 

As an approximation, use the simplified formula below to calculate the 95% confidence interval (95% CI), which 

is roughly twice the SEM: 

95% CI = 
2(𝑠)
√𝑛

 

 

 
 
PART B: Graphing the Data 
5. On a separate sheet of graph paper or on your computer, construct four bar graphs that compare the 

means of nonsurvivors and survivors for each physical characteristic (body mass, wing length, tarsus length, 

and beak depth). Label both axes of each graph and show either the SEM or 95% CI as error bars depending 

on your instructor’s directions. An example of a well-constructed bar graph is shown below (Figure 1).  

 

 

Mean Dorsal Fin Height Among Male and Female Orca Whales 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Once you complete your four bar graphs, describe in the space below any differences between nonsurvivors 

and survivors you observe in each graph. 

 

 

 

 

PART C: Calculating t-Test Statistics 
In Figure 1, the means are different and the error bars do not overlap, suggesting that there might be a 

difference between the two mean fin heights. But a statistical test is required to confirm that the difference is 

significant. The appropriate statistical test for comparing two means is the Student’s t-test for independent 

samples (the t-test). The t-test can assess whether any observed differences between the means of two samples 

(i.e., nonsurvivors and survivors) occurred simply by chance, by determining the probability (p) of obtaining a 

more different result if the null hypothesis is correct.  
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Figure 1. An example of a well-

constructed bar graph: Mean 

dorsal fin height in meters (m) for 

36 female and 36 male orca 

whales (Orcinus orca). In this 

case, error bars indicate 95% 

confidence intervals.  
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Table: Morphological variation in surviving and nonsurviving Darwin’s finches. 

 

Figure caption: _______________________________________________________________  
     __________________________________________________________________________ 
     __________________________________________________________________________ 
     __________________________________________________________________________ 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Evolution in Action: Statistical Analysis   
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PART A: Calculating Descriptive Statistics 
As you complete steps 1-3 below, enter your calculations in Table 2 for the mean, standard deviation, standard 
error of the mean, and/or 95% confidence interval as assigned by your instructor.  
 
Table 2. Descriptive statistics for morphological measurements taken from 100 medium ground finches (Geospiza fortis). 
The data are presented in two groups: birds that did not survive the 1977 drought (Nonsurvivors) and birds that survived 
the drought (Survivors). 
 

Descriptive 
Statistics 

Nonsurvivors Survivors 
Body 
Mass 

(g) 

Wing 
Length 
(mm) 

Tarsus 
Length 
(mm) 

Beak 
Depth 
(mm) 

Body 
Mass 

(g) 

Wing 
Length 
(mm) 

Tarsus 
Length 
(mm) 

Beak 
Depth 
(mm) 

Mean         
Variance 

(s2) 
1.842 5.181 0.701 0.775 3.087 5.448 0.735 0.709 

Standard 
Deviation 

        

Standard 
Error of the 

Mean   

        

95% 
Confidence 

Interval 

        

 
1. For the data in Table 1, calculate the mean for each physical characteristic in the nonsurvivor and survivor 

group. 
 

2. Calculate the standard deviation for each set of data. The standard deviation measures the mean difference 
between each individual measurement and the mean of the entire population. Standard deviation is a way 
to quantify how spread out a set of measurements is compared to the mean.  

 
(Note: To calculate the standard deviation for a sample, simply calculate the square root of the variance (s2) for 
that sample. In Table 2, the variance has already been calculated.) 

 
3. Calculate the standard error of the mean for each set of data.  
Because you are analyzing random samples of 50 birds taken from the entire medium ground finch population 
living on Daphne Major, it is not possible to know for certain that the mean you have calculated for each sample 
is the same as the mean of the entire medium ground finch population. One way to show how close the sample 
mean is to the population mean is to calculate the standard error of the mean (SEM). If you take many random 
samples, the SEM is the standard deviation of the different sample means. About 68% of sample means would 
be within one standard error of the population mean.  
 
Use the formula below to calculate the SEM: 

SEM = 𝑠
√𝑛
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From our discussion of this example in lecture, and from the video ‘Beak of the finch’, which 
variable would you expect to change the most – what was selection supposed to be acting on? 
     __________________________________________________________________________ 
     __________________________________________________________________________ 
     __________________________________________________________________________ 
 
Of the four variables, which seemed to change the most over the course of the drought. Why do 
you say that? 
     __________________________________________________________________________ 
     __________________________________________________________________________ 
     __________________________________________________________________________ 
 
What do you think is a better metric to measure amount of change; SD standard deviation or SE 
standard error, and why? Is it more meaningful to say a mean shifted 1.5 SD’s or 1.5 SE’s? 
     __________________________________________________________________________ 
     __________________________________________________________________________ 
     __________________________________________________________________________ 
 
Using the answer above, what trait do you now think changed the most, and what measure are 
you using to measure change? 
     __________________________________________________________________________ 
     __________________________________________________________________________ 
     __________________________________________________________________________ 
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Statistical terms worksheet – make sure you understand these! 
Population vs Sample 
 
 
 

 

Mean 
 

 

Median 
 

 

Mode 
 

 

Sum of squares 
 

 

Variance 
 

 

Standard deviation (of the 
sample or population) 
 
 

 

Standard error (of the 
mean) 
 
(How are SD and SE 
different?) 

 

Confidence interval 
 
 

 

t-test 
 
 

 

t-test is used to:  
 

t-value is an example of a 
test statistic 

What’s a test statistic? It’s a measure of how different 
our observations are from the null hypothesis. Examples 
include t, F, and c2 

Null hypothesis 
 
 

 

Alternative hypothesis 
 
 

 

P-value  
 
 
 

 


